
SA2 6 4 798AD"Spcia Reor

An Annotated Bibliography on Integration

in Software Engineering Environments

Alan W. Brown
Maria H. Penedo

May 1992

DTIC
5<' ECTE

S ' MAY 2 5 1993

X E

x~ X,

mýdWRlb& ~ , TATEMh
Vpproved for public 141901t

/"•Y 93-11437

S.. .. . an II II I II I I I I I I I I I

Special Report
CM(UISEI-92-SR-8

May 1992

An Annotated Bibliography on Integration
in Software Engineering Environments

Accesion For Alan W. Brown
NTIS CRA&I

jDTC TAB CASE Environments Project
u jv',cer u

...................... •Maria H. Penedo

By TRW
Dt ibitiof 1I

Availability Codes
Avail anrdjor

Dist Special

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue. Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this repo,? i. no! intended in any way to infringe on the rights of the trademard holder.

Table of Contents

1. Introduction

References 3

CMU/SEI-92-SR-8

CMUISEI-92-SR-8

An Annotated Bibliography on Integration in Software
Engineering Environments

Abstract: This paper provides an annotated bibliography on integration in software engi-
neering environments (SEEs). The aim is to provide readers with a source of information
that can be used as the basis fcr more detailed studies in this area.

1. Introduction

There is currently a great deal of activity within the software engineering community in the area
of providing automated support for aspects of the software development process. The diverse
tools, systems, and environments that have resulted all have the basic aim of supporting (or
automating) some part of the software development process with the expectation that the
process will be be more predictable, less expensive, easier to manage, or produce higher
quality products.

While many successes have been made in individual areas, perhaps the greatest challenge is
to integrate these successes to produce an effective and integrated automated environment
that supports the complete software development life cycle. While numerous terms have
been coined, we denote those environments as Software Engineering Environments (SEEs).
There are many reasons why the individual successes have not been reflected in the success
of SEEs. However, perhaps the underlying reason is that amalgamation is not equivalent
to integration. The difficulty that arises is in precisely stating (both in terms of quality and
quantity) why integration and amalgamation are different, and how integration can best be
achieved. Factors to be taken into account include:

"* Scale - the size and complexity of a SEE bring problems of management,
control, and consistency.

"* Lack of maturity - much of the technology that is being used in SEEs is
immature. As a result, a sufficient body of relevant knowledge and expertise
still needs to be built.

" Diversity - a wide range of requirements must be addressed that come
from many different classes of potential SEE users (e.g., developers, man-
agers, and tool builders), many types of possible application domains (e.g.,
data processing, real-time, and financial services), and many different struc-
tures of organizations that may wish to use a SEE (e.g., size, resources,
and work habits).

" Technology base - a SEE attempts to tie together a collection of different
technological bases into a consistent system. For example, a SEE can be
seen as an extended operating system, a complex database application, a
very high-level programming language, a diverse collection of user interface
systems, or any combination of these.

When integration requirements are combined with other SEE requirements, the problems
increase. For example, it is easy to see conflicts between the need for openness, tailorability,

CMU/SEI-92-SR-8

and extensibility of a SEE on the one hand, and the need for consistency and predictability in
a SEE on the other. These trade-offs must be evaluated within the context of integration.

Not unexpectedly, the result is a wide collection of views on what integration means in a SEE,
how effective integration can currently be achieved, and what is important to achieve better
integrated SEEs in the future. Perhaps the best that can be said is that all of these views
of integration are meaningful and are necessary to gain a deeper understanding of SEEs
and their architectures. Appreciating the range and complexity of the problem is essential
to potential purchasers of SEEs, environment integrators, tool builders, and researchers
investigating, developing and enhancing SEE technology.

This document contains an annotated bibliography on integration in software engineering
environments. The references cited here describe, discuss, and analyze integration issues
related to SEEs. They deal with: ways of characterizing integration; concepts, models,
approaches, techniques and mechanisms in support of integration; and technologically and
socially related issues. Our criterion in selecting papers has been to choose papers that we
believe provide insight into integration beyond a single tool or system. Therefore, it is not
intl,,tded that this bibliography cover every tool, system, or technology that claims to support,
or embody, integration in a SEE. The annotations objectively summarize key aspects of the
papers; the authors intentionally avoided comparisons and evaluations.

Inevitably in such a venture, relevant references are omitted, and others are included that may
not directly meet the established goals. However, our hope is that this document provides
an important source of information for all those interested in issues concerning tool and
environment integration.

The authors welcome comments, criticisms, or suggestions for additions to this bibliography.

2 CMU SLI-92-SR-8

References

[1] Brown, A.W. and McDermid, J.A., Learning from IPSEs Mistakes. IEEE Software,
8(2):23-28, March 1992.
The authors argue that much of the current work on Integrated Project Support
Environments (IPSEs) - particularly the work on Public Tool Interfaces (PTIs)
- is of limited utility because it focuses too heavily on the latter. To support
this argument they present an approach for quantifying the degree of integration
achieved in an IPSE and apply that approach to some existing PTIs and IPSEs.
Integration is defined in terms of five orthogonal dimensions: interface integration
(consistency of user interface); t1chnical integration (consistency of development
methodology); too! integration (data sharing); team integration (isolation and
communication between users on a team - e.g., through private and shared
work areas); and management integration (derivation of management information
directly from technical information produced by software engineers).

The authors claim that various degrees (or levels) of integration may be defined
for each of the five dimensions. As an example, they propose the following levels
of tool integration (from highest to lowest):

"* Method level (e.g., sharing of knowledge about how the data is used in the
process)

"* Semantic level (e.g., sharing of data structure definitions and the meanings
of operations on those structures)

"* Syntactic level (e.g., sharing of data structures)
"* Lexical level (e.g., sharing or formatted data)

"* Carrier level (e.g., sharing of byte streams)

[2] Brown, A.W. and McDermid, J.A., On Integration and Reuse in a Software De-
velopment Environment. In F. Long, editor, Software Engineering Environments,
Ellis Horwood, Chichester, England, 1991.
This paper explores the relationship between integration and reuse (i.e., reuse
of existing tools). Integration is characterized in the same way as in the authors'
1992 paper [1]. The authors argue that the objectives of integration and reuse
are inherently conflicting. They believe that in principle, reuse (without major
re-engineering) can only be achieved between intrinsically compatible software
tools. As a result, tools that exhibit higher levels of integration (e.g., at the se-
mantic level) would have to be designed with a shared understanding of the data
and the operations on the data. Hence, we could not expect to be able to reuse
one pre-existing tool in the context of another unless both had been developed
with common design goals.

The conclusion is that two fundamental objectives of IPSEs (i.e., high levels of in-
tegration and reuse) cannot both be achieved simultaneously. On the other hand,
the authors note that the level of integration required between stages in devel-
opment is much less than that required within stages. This suggests that there
may be some opportunity for reusing toolsets that are already highly integrated,

CMU/SEI-92-SR-8 3

then obtaining the necessary lower levels of integration between technical stages
using some mechanism such as an IPSE infrastructure.

[3) Cagan, M., The HP SoftBench Environment: An Architecture for a New Genera-
tion of Software Tools, Hewlett-Packard Journal, 41(3), June 1990.
This paper describes the concepts and tool integration architecture of the Soft-
bench Environment, an integrated environment designed to facilitate rapid, inter-
active program construction, test, and maintenance in a distributed computing
environment. Its architecture is geared toward the integration and encapsulation
of CASE tools.

The review is quite comprehensive, discussing issues of the approaches embod-
ied in SoftBench in general terms, before describing the SoftBench approach in
particular. The tool integration aspects described are used for:

"* Tool communication, in support of tool collaboration in presenting a task-
oriented environment to programmers

"* Distribution of data, execution, and display, used by the tools to allow users
to make effective use of the computational, file storage, and presentation
capabilities available on the network

"* Encapsulation, which provides the above mechanisms to tools without re-
quiring access to the tools' source code

(4] Clemm G. and Osterweil L., A Mechanism for Environment Integration, ACM
Transactions on Programming Languages and Systems, 12(1):1-25, January
1990.

This paper discusses the tool integration philosophy, the architecture and lessons
learned with the use of the Odin environment integration system. The Odin ap-
proach is based on a central object store and includes features such as the typing
of software objects, the composition of tools out of modular tool fragments, the
optimization of the storage and rederivation of software objects, and the isolation
of tool interconnectivity information in a single centralized object. Odin can be
thought of as an .-ttorpreter !r a high-level rommand lanne 'ane whose operands
are the various large-grained software objects in the data repository and whose
operators are tool fragments. Odin enables tool integrators to specify how the
tool fragments and object types relate to each other.

There are two central constructs: a derivation graph, which specifies type and tool
interconnections, and a derivation forest, which specifies how actual instances
of types are related to each other. Those concepts are described, together with
the Odin specification language and Odin request language. The experience
acquired by projects using Odin to integrate tools is also described.

[5] Fernstrom, C. and Ohlsson, L., Integration Needs In Process Enacted Environ-
ments, Proceedings of the 1st International Conference on the Software Process,
Redondo Beach, CA, USA, October 21-22, 1991, IEEE Computer Society Press,
Los Alamitos, CA, 1991.

This paper describes the interaction between elements of a process-enacted en-
vironment and elaborates on the need to achieve integration and at the same

4 CMU/SEI-92-SR-8

time independence of these elements. Tool execution and communication via
process control is also considered a form of environment integration. The paper
discusses the underlying concepts of process-enacted envirunments from the
users' standpoint, the means of implementation, and the specific requirements
process enactment puts on tools. It then presents an experimental SEE, devel-
oped by Cap Gemini Innovation within the context of the Eureka Software Factory
(ESF), which exhibits a number of the required characteristics. The authors do
not characterize tool integration per se, but they do discuss the general problem
of achieving integration while retaining independence between tools.

[6] Fleming, R. and Wybolt, N., CASE Tool Frameworks, Unix Review, 8(12):24-32,
December 1990.
This paper is an extended version of [27]. The main additions are a historical
context for the work on integration by reviewing the Ada environments work in
the Stoneman report, followed by a more detailed examination of possible CASE
integration technologies (such as databases, data interchange formats, and mes-
sage passing). A number of standards efforts appropriate to tool integration are
also reviewed.

[7] Garlan, D. and Ehsan, I., Low-Cost, Adaptable Tool Integration Policies for
Integrated Environments, Proceedings of the 4th International Workshop on
Computer-Aided Software Engineering, Irvine, CA, ACM SIGSOFT 15(6):1-10.
December 1990.

This paper demonstrates how tool integration based on message passing can be
extended/adapted to allow dynamically configurable policies of tool interaction.
This consists of augmenting the message server of the Field environment [16]
with a mechanism for determining how to decode messages sent between tools.
The result is that when the message server determines that a particular tool is
interested in a message, a set of policy rules is consulted to determine what action
to take. Such policy rules are independent of the tools, and can be amended
without a need to change either the message server or the tools.

The Forest system - an implementation of this mechanism - is described, to-
gether with its facilities for multiple-user policy definition support. The approach is
also compared to similar approaches; its main benefit is to provide the capabilities
of more general and costly approaches with little effort.

[8] Harrison, W., Kavianpour, M., and Ossher, H., Integrating Coarse-Grained and
Fine-Grained Tool Integration. IBM Research Report No. RC17542, IBM T.J.
Watson Research Center, Yorktown Heights, N.J., ;991.

This paper discusses integration of coarse-grained and fine-grained systems.
The granularity refers to both the data items being recorded and manipulated,
and the control operations between objects.

The problem of coarse and fine-grained integration is examined in isolation,
taking PCTE as a typical system that provides coarse-grained data integra-
tion through objects that are at the file level, and weak linkage between pro-
cesses through message queues. The fine-grained example used is an Object-
Oriented Database (OODB), which allows much smaller-sized objects (at the

CMU/SEI-92-SR-8

single program-statement level), and has control through message invocation of
the operations encapsulated with the data objects.
The paper then describes in more detail how the PCTE system could be extended
with an 0001 to provide bx,r coarse and fine-grained integration. The aim is to
provide a migration pa t h , the fine-grained support that the authors believe will
be the future for en i; v, iments.

[9] Lewis, G.R.. CASE Integration Frameworks, SunTech Journal, 3(5):50-51,
November 1990.

Thi. - aper describes a short, but useful summary of the possible approaches to
tool integration together with a discussion of the reasons why a tool integration
standard is important, and requirements on practical tool integration standards.
It discusses data and control integration aspects, including:

"* Data linkage, i.e., establishing semantic relationships between pieces of
information maintained by different tools

"* Data interchange, i.e., transferring information between tools in some mu-
tually agreed representation

"* Data sharing, i.e., tools accessing data in a mutually accessible place
"* Interprocess control, i.e., a tool causing some action to be performed in

another tool
"* Meta control, i.e., a co-ordinating agent to sequence tool actions
"* Advanced data linkage support, i.e., using general underlying data inter-

change and interprocess control mechanisms

Useful diagrams summarizing the different ways in which tools can exchange
information are provided.

[101 Mi, P. and Scacchi. W., Process Integration in CASE Environments, IEEE
Software, 8(2):45-53, March 1992.
This paper defines process integration as a way to represent development activ-
ities explicitly in a software process model to guide and coordinate development
and to integrate tools and objects; their implementation strategy is to realize
process integration using existing CASE environments or tool'-.
The advantages of process modeling and enactment are discussed, and a par-
ticular software model and enaction mechanism is presented. Different process-
based SEE user interfaces are illustrated, distinguishing between a software
developer and a process manager's needs.
These ideas are then illustrated with the Softman experiment - a migration of an
existing CASE environment into a user-interactive process driven environment,
by instantiating their process model into the Softman process model and inte-
grating Softman's object model and tool set. Details of the resultant system are
described.

[11] Morris, E., Feiler, P., and Smith, D., Case Studies in Environment Integration,
Technical Report CMU/SEI-91-TR-13, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, May 1991.

6 CMU/SEI-92-SR-8

This paper provides a useful set of observations with respect to integration,
based on case studies of four software engineering environments. The systems
studied are: the Boeing Automated Software Engineering Environment (BASE),
the Rome Airforce Laboratory funded Software Life Cycle Support Environment
(SLCSE), the Verdix VADS APSE, and Hewlett Packard SoftBench environment
[3]. It examines the environment standards, implementations, and technology
that proved useful in the integration of tools into these environments.

The observations are concerned with the current state of tool and environment
integration and trends in integration; they deal with aspects of: tool maturity,
vendor egocentrism, conservative integration, virtual interfaces, user interface,
data interchange, process support, framework support, data granularity, and
programming in the large. Those observations were also based on surveys with
environment and tool builders at two workshops. Key trade offs for SEE builders
and users are also identified.

[12] Nejmeh, B., Characteristics of Integrable Software Tools, INTEGS/WTOOLS-
89036-N, Version 1.0, Software Productivity Consortium, Inc., Herndon, VA,
1989.

This paper discusses four dimensions of integration in a software development
environment: data integration; presentation integration; interoperability integra-
tion; and process integration. They are variations of Wasserman's definitions
[25].
This paper also describes characteristics of integrable tools, i e., characteristics
that make a tool easy to add to Software Development Environments, and dis-
cusses those characteristics as they relate to the four dimensions of integration.

The integration characteristics were classified into four categories: environment
sensitivity (e.g., location independence), characteristics to allow a tool to peace-
fully co-exist with other tools; interoperability (e.g., data import), characteristics to
facilitate interoperability among tools; extensibility and adaptability (e.g., object
scnema extension), characteristics to facilitate tool extension or adaptation; and
standards characteristics (e.g., portability) related to conformance to star.dards.

[13] Oliver, H., Adding Control Integration to PCTE. In Software Development Envi-
ronments and CASE Technology, A. Enders and H. Weber, editors, number 509
in Lecture Notes in Computer Science, pages 69-80. Springer-Verlag, Berlin,
1991.

The main theme of this paper is the need to combine differert forms of integration
in a software engineering environment, particularly data and control integration
mechanisms. The focus of the paper is a set of experiments carried out at Hewlett-
Packard aimed at re-implementing SoftBench (which provides control integration)
on top of PCTE (which provides data integration). Details of these experiments
are given, followed by some thoughts on the likely usefulness of the resultant
system.

[14] Penedo, M. H., and E. D. Stuckle, PMDB - A Project Master Data Base for
Software Engineering Environments, Proceedings of the 8th International Con-
ference on Software Engineering, London, August 1985.

CMU/SEI-92-SR-8 7

This paper describes a model of the entire life cycle in terms of data and relation-
ships; the model is denoted the Project Master Data Base (PMDB) Model. The
PMDB model is a conceptual or logical life cycle schema to be used as a com-
mon data interoperability model. The model can also be used as oart of a SEE
user interaction paradigm, since it reflects users' perspectives of the data used
in their project activities. Key concepts that influenced the design of this model
were the need to: support large projects' needs, model the full life cycle from
proposal to delivery, provide a generic model, avoid redundancy, and exclude
implementation issues.

This paper reports the initial results of the PMDB work. It presents the PMDB
model, an entity-relationship model consisting of 31 types (e.g., requirement,
interface, software component, resource, task, person, milestone); approximately
200 att;tbutes associated with the types and approximately 200 relationships
between types. The paper also discusses technical issues in the definition and
design of an environment database implementing such model.

[15] Perry, D. and Kaiser, G., Models of Software Development Environments, IEEE
Transactions on Software Engineering, 17(3), March 1991.

This paper has a dual focus: first, it presents a genera; model of software de-
velopment environments (SDEs) in terms of their structures, mechanisms, and
policies; second, it explores the application of this model (the SMP model) to the
classification of SDEs. Tool integration is discussed as it relates to structures,
mechanisms and policies that characterize integrated SDEs. For instance, the
authors note that the more complex structures required by integrated environ-
ments enable more sophisticated policies, but make it harder to integrate new
mechanisms and policies into the environment. The authors classify SDEs ac-
cording to the scale of development supported. They define four classes of SDEs,
ranging from small-scale (i.e., supportin.g individual development) to large-scale
(i.e., supporting development across multiple projects). Each class of SDE is an-
alyzed in terms of its prevalent structures, mechanisms, and policies. This same
kind of analysis is also applied to an existing taxonomy of SDEs that is based on
historical trends.

[16] Reiss, S., Connecting Tools Using Message Passing in the Field Environment,
IEEE Software, 7(4):57-66, July 1990.

This paper describes an approaci to tool integration based on message passing,
and the system Field developed as a testbed for this approach. Reiss's thesis
is that the approaches to tool integration based on a central database are too
complex and monolithic to provide either the speed or flexibility required in a
software development environment. He believes that providing a central message
server f:.-Ility allowing tools to communicate via message passing is simple,
flexible, and adequate to support most forms of tool collaborations.

The Field environment is described in some detail. It is a system supporting three
purposes: a programming environment for teaching undergraduates, a research
programming environment, and a testbed for developing new tools. It combines
the selective broadcast communication mechanism, an annotation editor, and a
set of specialized interactive analysis tools.

8 CMUfSEI-92-SR-8

The Field environment has been influential as the catalyst for a number of com-
mercial products, including Hewlett-Packard's SoftBench, Sun's ToolTalk, and
DEC's FUSE.

[17] Schafer, W. and Weber, H., The ESF-Profile, in Handbook of CASE, P. Ng and
R. Yeh, Editors, Van Nostrand Reinhold, New York, 1989.

This paper presents an early description of the profile of the Eureka Software
Factory (ESF) project from the authors' perspectives. ESF is a large European
research effort aiming at developing flexible concepts for the integration of soft-
ware development support tools that have been built at different sites, and the
application of those concepts to build customized software factories.

This paper characterizes the ESF factory concept, which includes a reference ar-
chitecture, a reference mode;, and an instantiation procedure that together allow
ESF instances to be derived. The ESF reference architecture fixes the spectrum
of possible ESF instances, where s the reference model defines different inter-
faces on different abstraction leve's for each architectural component. According
to the authors, the result is that any new tool can be plugged in at the most
suitable level of abstraction and does not need to be adapted to one specific
standard interface.

Five degrees of integration are defined, which are partially ordered in that one
may achieve a certain degree of integration only if certain lower degrees of
integration have already been achieved:

1. Machine-integrated, enabled by common network services

2. Object-integrated, enabled by a common object store and a common I/O
manager

3. Process-integrated, crzbled by the specification of a software development
process

4. Method-integrated, enabled by a combination of object-integrated and
process-integrated, to achieve sharing of information at the semantic level

5. Method-uniform, enabled by a single development method throughout the life
cycle

The ESF reference model is claimed to be a natural extension of the ISO/OSI
model. To support integration of existing tools, the ESF reference model defines
a hierarchy of abstract levels of communication between tools. ESF intends to
define/reuse and standardize those interaction protocols, also called Software
Buses [18]. Tools are integrated at different levels according to those interaction
protocols.

[18] Schuelke, F. and Holtkamp, B., The Software Bus - Communication Aspects,
University of Dortmund Technical Report, Dortmund, Germany, March 1991.

This paper presents a communication-oriented view of the Software Bus, which
is the global integration mechanism in a Factory Support Environment (central
concept of the Eureka Software Factory (ESF) program). The Software Bus
goes beyond communication to be a mechanism that enables the plugging of

CMU/SEI-92-SR-8 9

components that make up a software factory instance. Four major service areas
are to be supported by the Software Bus: platform management, component
management, service management, and tool management.

The paper identifies needs and requirements for the Software Bus. Emphasis is
placed on the communication capabilities of the Software Bus and how MUSE,
a University of Dortmund system for managing the interoperation of components
in a distributed environment, can be used as a Software Bus. The paper also
describes the software factory reference framework (SFRF), which defines the
means of integration for Software Factories. It is defined as a four-stage, multi-
layer framework consisting of the following stages:

1. interworking of human users or user groups

2. interaction of human users and the computing system

3. interoperation of different software capabilities

4. interconnection of different hardware platforms

[19] Thomas, I., PCTE Interfaces: Supporting Tools in Software Engineering Envi-
ronments, IEEE Software, 6(6):15-23, November 1989.

This paper describes the Portable Common Tools Environment (PCTE) and some
aspects of the PCTE Added Common Tools (Pact) environment with respect to
the use of the PCTE interfaces. The history of the PCTE effort is described,
together with an overview of the PCTE interface itself. PCTE aimed to define a
public tool interface to be used as a portability interface and integration support
for the ESPRIT software tools. The Pact environment was built on top of the
PCTE interface; it includes a set of common services and a set of integrated
tools. The Pact common services include version management, data query and
manipulation primitives, and documentation structure management.

The experiences with the Pact project are discussed, including some areas that
led to changes and additions to the PCTE interface itself. Four areas of integration
were identified: the common services, the use of the object base, user interface
uniformity, and tool composition.

[20] Thomas, I., Tool Integration in the Pact Environment, Proceedings of the 11 th
International Conference on Software Engineering, Pittsburgh, PA, May 16-18,
1989, IEEE Computer Society Press, Washington, DC, 1989.

This paper describes the PCTE Added Common Tools (Pact) environment, a soft-
ware engineering environment built on the PCTE interfaces. The paper describes
the Pact architecture, which includes a set of common services and a toolset built
using those common services. The Pact common services include version man-
agement, data query and manipulation primitives, and documentation structure
management. The toolsets discussed in the paper are: configuration manage-
ment, project management and document preparation tools. It also includes a
rationale for the architecture and lessons learned about the benefits and disad-
vantages of a common service approach to environment architectures based on
Public Tool Interfaces.

10 CMU/SEI-92-SR-8

[21] Thomas, I., Goals and Requirements for Integration Frameworks, Proceedings of
the 4th International Workshop on Computer-Aided Software Engineering, Irvine,
CA, ACM SIGSOFT 15(6):201-203, December 1990.

This short paper looks at the requirements for a tool integration framework. It
is based on the author's experiences of developing the PCTE interface, and the
requirements that were imposed on it. In summary, the requirements identified for
a tool integration framework are: completeness of the interface; a clear migration
path for existing tools; multi-language development support; a separation of policy
issues from mechanistic ones; support for distributed development; scalability of
services for large-scale development; and clear identification of the scope of
services and the class of end-user they are intended to support.

[221 Thomas, I. and Nejmeh, B., Definitions of Tool Integration in Software Engineering
Environments, IEEE Software, 8(2):29-35, March 1992.

This paper presents a conceptual framework for helping to determine how well a
tool is integrated within a software engineering environment. It defines integration
as a property of the relationship between elements of an environment. However,
it focuses on integration relationships between tools.

Those properties are defined in the context of four well-known types of integra-
tion: presentation integration, data integration, control integration, and process
integration. Those properties, described together with support mechanisms that
can improve them, are:

"* From the perspective of presentation, appearance and behavior, and inter-
action paradigm

"* From the data integration perspective, interoperability, non-redundancy,
data consistency, data exchange, and synchronization

"* From the control integration perspective, provision and use

"* From the process integration perspective, process step, event, and con-
straint

The authors note that they expect this set of proposed relationships and properties
to be extended and refined as the understanding of tool integration grows.

[23] Wallnau, K.C. and Feiler, P.H., Tool Integration and Environment Architectures,
Technical Report CMU/SEI-91 -TR-1 1, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, May 1991.

Both an overview of approaches to tool integration and a review of the different
types of too! integration are provided in this paper. The paper compares the
centralized approach of many Integrated Project Support Environment (IPSE)
solutions, to the more ad hoc, "point-to-point" approaches taken by many CASE
tool vendors in forming tool coalitions. The conclusion of the paper is that these
two approaches have advantages that can be combined in future systems. This
combined aproach, called 'lederated CASE", can come about by recognizing
the need for tool integration at three distinct abstract levels: the tool mechanisms
level, the tool semantics level, and the tool process level.

CMU/SEI-92-SR-8 11

[24] Wasserman, A.I. and Pircher, P.A.. Visible Connections, Unix Review, 4(10):62-
73, October 1986.

This paper looks at the need to provide an "open architecture", believing that
this implies that system components must be connected in visible ways. Exam-
ples of open architectures are discussed, including Unix and others based on
a common file format. The need for software architectures to have equally "vis-
ible connections" is then discussed. The openness is described at four levels:
the environment level, tool level, data repository level, and file interface level.
The Software through Pictures (StP) product is then described in terms of its
openness at each of these four levels.

[25] Wasserman, A.I., Tool Integration in Software Engineering Environments, Pro-
ceedings of Software Engineering Environments: International Workshop on En-
vironments, Chinon, France, September 18-20, 1989, F. Long, editor, number
467 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1990.

This paper proposes five types of tool integration and discusses levels of inte-
gration within each type. The types of tool integration are:

1. Platform integration, i.e., the set of system services that provides network and
operating systems transparency to applications

2. Presentation integration, i.e., tools that share a common "look and feel" from
the user's perspective

3. Data integration, i.e., support for data sharing across tools

4. Control integration, i.e., support for event notification among tools and the
ability to activate tools under program control

5. Process integration, i.e., support for a well-defined software process

The paper presents a structure for building tools that advocates isolating the
functionality of the tool from its internal mechanisms so as to support adaptation
to emerging standards. This paper also presents an overview of the integration
techniques employed in IDE's Software through Pictures environment, using the
concepts described in the paper.

[26] Wileden, J., Wolf, A., Rosenblatt, W., Tarr, A., Specification Level Interoperability,
Proceedings of the 12th International Conference on Software Engineering, Nice,
France, 1990.

This paper describes an approach for component interoperability denoted as
Specification Level Interoperability (SLI), which provides support, as indicated by
its name, at the specification level. The approach is a high-level, representation-
independent approach for combining software components written in different
languages or that run on different machines.

The paper discusses some representation-level interoperability (RLI) mecha-
nisms and the SLI approach, which consists of four components:

1. A unified type model, i.e., a notat:)n for describing the entities to be shared
by interoperating programs

12 CMU/SEI-92-SR-8

2. Language bindings, which connect the type models of the languages to the
unified type model

3. Underlying implementations, which realize the types used by the different
interoperating programs

4. Automated assistance, which eases the task of combining components into
an interoperable whole

The SLI approach does depend on RLI mechanisms. However, the paper claims
that, if fully realized and properly used, SLI can be a type-safe, extensible mech-
anism for tool/component interoperability.

The paper also describes a prototype realizing the model and experience with the
use of the prototype. It consists of a unifying type model called UTM-0, bindings
for Lisp and Ada, an implementation strategy, and a UTM-0 automated generator.

[27] Wybolt, N., Perspectives on CASE Tool Integration, ACM Software Engineering

Notes, 16(3):56-60, July 1991.

This paper provides a short overview of key technical, political, and economic
issues surrounding CASE tool integration. It looks at some of the common ques-
tions of CASE integration such as 'Where does the data reside?" "How do the
tools communicate?" and 'Who carries out the integration, and who maintains
it?". Some of the technologies proposed to answer these questions are then re-
viewed, before concluding by looking at some of the real-world practicalities of
providing an integrated environment.

[28] Wybolt, N., CASE Repositories and Tool Integration - A Reality Check, Pro-
ceedings of the 4th International Conference on Software Engineering and its
Applications, Toulouse, France, December 1991.

This paper discusses data repositories in the context of tool integration and
enumerates a number of potential problem areas from the perspectives of the
CASE tool supplier and end-user. It then surveys alternatives to the repository
and its problem areas, including the integration of links and message switches.
in link technology, the data repository is replaced by a network-wide database of
links between objects that may reside in the same or different databases (e.g.,
NSE's Link Service Facility). Message switch technology embodies a mechanism
whereby tools send and receive messages (e.g., HP's SoftBench).

[29] Zarrella, P., CASE Tool Integration and Standardization, Technical Report
CMU/SEI-90-TR-14, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, December 1990.

This paper discusses the current barriers to integration of CASE tools and de-
scribes some actions being taken to overcome them. It addresses the issues,
problems and resolution efforts related to CASE integration and standardiza-
tion from the users' perspective. For discussion purposes, CASE tool integration
is presented according to five areas: single-vendor (internal) tool integration,
multiple-vendor (external) tool integration, operating environment 'ntegration, de-
velopment process integration, and end-user integration.

CMU/SEI-92-SR-8 13

Issues related to standardization are also discussed, and a summary of key stan-
dardization efforts and their status is presented. The author sees standardization
efforts as a possible path to tool integration, but conjectures that market-driven
de facto standards may become the cornerstone of future CASE tool evolution.

Acknowledgements

The authors would like to acknowledge A. Goldstein, who contributed to an earlier draft of this
bibliography (under STARS sponsorship), and P. Oberndorf and I. Simmonds, who provided
additional recommendations.

This work was supported in part by the Software Engineering Institute, sponsored by the
U.S. Department of Defense, and in part by the Defense Advanced Research Projects
Agency/Information Systems Technology Office, DARPA Order 7314, issued by the Space
and Naval Warfare Systems Command under contract N00039-91-C-0151.

14 CMU/SEI-92-SR-8

UNU1M/TED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASS I-ICA ION lb. RESTRICTIVE MARKL.GS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTnON/AVAILABILrIY OF REPOgr.

N/A Approved for Public Release
2b, DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIATION REPORT NUMBER(S) S. MONIOR•iG ORGAN_7ATION REPORT NU.,Wi.R(S)

CMU/SEI-92-SR-08

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYM4BOL 7s. NAME OF MONiTORLNG ORGANZAXTION

Software Engineering Institute (if aplicable) SEI Joint Program Office
SEI

6c. ADDRESS (city sre, and zip code) 7b. ADDRESS (city, state, and -p code)

Carnegie Mellon University ESC/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

&a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMB I;R
ORGANIZATION (if applicable) F1 962890C0003

SEI Joint Program Office ESC/AVS

Sc. ADDRESS (city, state, and zip code)) 10. SOURCE OF FUNDING NOS.

Carnegie Mellon University POGRAM PROJECT TASK 'ORK t- T
Pittsburgh PA 15213 N/EMANT No NO. NO NO

63756E N/A N/A N/A
11. TITLE (Include Security Clhtsillcation)

An Annotated Bibliography on Integration in Software Engineering Environments

12. PERSONAL AUTHOR(S)

Alan W. Brown and Maria H. Penedo

13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (yemar month, day) i5. PAGE COtNTr

Final I OM TO May 1992 14 pp.
16. SUPPLEMENTARY NOTATION

1?. COSATI CODES 1_ . SUBJECT TERMS (continue on rever• of necessay and identify by block number)

FIELD GROUP SUB. GR.

19. ABSTRCI (continue on reve=e if necessary and i'deify by block number)

This paper provides an annotated bibliography on integration in software enqineering environments (SEEs). The aim
is to provide readers with a source of information that can be used as the basis for more detailed studies in this area.

(please turn ovt-

20. DISTRIBTIrON/AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED•-•LUM•EDN SAME AS RPTf DTIC USERS l Unclassified, Unlimited Distribution

22s. NAME OF RESPONSIBLE INDIVIDUAL 22., TELE'PIONE NUMBER (include area code) 22c O.I'I SYMBOL

Thomas R. Millqr, Lt Col, USAF (412) 268-7631 ESC/AVS (SEI)

DD FORM 1473, 53 APR EDITION of I JAN 73 IS OBSOLETIIE UN1MITED. UNCLASSUIE'-)
SM•CV.RtTY nLASMIrICATIO'N CF TillS

ABSTRACT - co•,mnued fr pag one, block 19

